
TETRAHEDRON
LETTERS

Tetrahedron Letters 42 (2001) 4837–4839Pergamon

Novel chiral phosphine–oxazinane ligands in palladium-catalyzed
asymmetric allylic alkylation
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Abstract—Palladium-catalyzed asymmetric allylic alkylation of 1,3-diphenyl-2-propenyl acetate (8a) with a dimethyl malonate–
BSA–LiOAc system has been successfully carried out in the presence of novel chiral phosphine–oxazinane ligands such as 5b in
good yields with good enantioselectivities (up to 95% ee). © 2001 Elsevier Science Ltd. All rights reserved.

Palladium-catalyzed asymmetric allylic alkylation is a
useful process for asymmetric C�C bond forming reac-
tions. To achieve high enantioselectivity in the catalytic
reaction, a variety of chiral ligands have been studied.1

Among the ligands, chiral oxazolines have proved to be
extremely efficient ligands in some catalytic reactions.2

Recently, chiral phosphine–oxazine ligand 13 and chiral
phosphine–oxazolidine ligands 24 and 35 were shown to
be effective ligands in palladium-catalyzed asymmetric
allylic alkylation similarly to phosphine–oxazolines. On
the other hand, palladium-catalyzed asymmetric allylic
alkylation using phosphine–oxathiane ligand 4 has been
reported.6 To the best of our knowledge, the oxazinane
type ligands have never been involved in this area. With
the aim of exploiting the less popular oxazinanes, we
synthesized chiral phosphine–oxazinane, starting from
(S)-ketopinic acid.7 Herein, we wish to describe the first
application of the oxazinanes as ligands to the palla-
dium-catalyzed asymmetric allylic alkylation.

The synthesis of phosphine–oxazinane ligands 5 is
shown in Scheme 1 and Table 1. These ligands 58 were

prepared by the corresponding amines with (S)-
ketopinic acid followed by the reduction of 6, and the
condensation of aminoalcohols 7 with 2-(diphenyl-
phosphino)benzaldehyde.

The ligands 5 were obtained the diasteromerically pure
within NMR spectra. The stereochemistry of 5b was
determined by NOE measurement of 1H NMR spectra.
Thus, the NOE experiment for 5b confirmed interac-
tions between the Ha and Hb and between Hb and Hc

(Fig. 1).

We applied the chiral phosphine–oxazinane ligands 5 to
the palladium-catalyzed asymmetric allylic alkylation of
1,3-diphenyl-2-propenyl acetate (8a) with a dimethyl
malonate (9a) (Scheme 2). This reaction was carried out
in the presence of 2 mol% of [Pd(�3-C3H5)Cl]2, 4 mol%
of chiral ligand, and a mixture of N,O-bis(trimethyl-
silyl)acetamide (BSA) and 2 mol% of LiOAc at room

temperature (entries 1–4, Table 2). These ligands 5
showed similar reactivity and enantioselectivity except
5d. Using ligand 5b, the product (R)-10a was obtained
the best enantioselectivity (79% ee) in these ligands 5
(entry 2). We investigated the effect of solvents on this
reaction using 5b (entries 2 and 5, 6, 8). When the
reaction was carried out in toluene, the enantioselectiv-
ity was higher than for the other solvents (entry 6). On
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Scheme 1.

the other hand, with diethyl methylmalonate (9c), the
reaction gave the corresponding product 10c9 in moder-
ate enantioselectivity (entry 7). The reaction at 0°C
further improved the enantioselectivity to 88% ee (entry
9). Although the reaction rate became slow by further
depressing the temperature (−20°C), the enantioselectiv-
ity was improved to 95% ee (entry 10). When 1,3-
diphenyl-2-propenyl pivalate (8b) was used instead of
1,3-diphenyl-2-propenyl acetate (8a), the reaction with
a dimethyl malonate (9a) gave the product 10a in good
enantioselectivity (entry 11). When diethyl malonate
(9b) was used instead of 9a, the reaction gave the
corresponding product 10b10 in good enantioselectivity
(entry 12).

Figure 1. Selected NOE correlations of 5b.

Table 1. Synthesis of phosphine–oxazinane ligands 5

Yield of 7 (%)Yield of 6 (%)REntry Yield of 5 (%)

Et1 36 59 55
90 47n-Pr2 58

65 65n-Bu3 64
4 652Bn 38

Scheme 2.

Table 2. Asymmetric allylic alkylation using chiral ligands 5a

Ligand R R1Entry R2 Solv. Temp. (°C) Yield of 10 (%)b Ee of 10 (%)c

THF 85 64rt1 5a Me Me H
98 792 5b Me Me H THF rt

rt 823 5c Me Me H THF 74
13rt4 225d THFMe Me H

Ether rt 875 805b Me Me H
rt 816 5b Me Me H PhMe 85

60rt7 595b PhMeMe Et Me
MeCN rt 478 655b Me Me H

0 909d 5b Me Me H PhMe 88
50−2010d 955b PhMeMe Me H

PhMe −20 2011e 955b t-Bu Me H
−20 7312e 5b Me Et H PhMe 92f

a The reaction was carried out for 24 h.
b Isolated yields.
c Determined by HPLC analysis using a chiral column (Chiralcel OD-H).
d This reaction was carried out for 100 h.
e This reaction was carried out for 120 h.
f Determined by HPLC analysis using a chiral column (Chiralcel OJ).
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In conclusion, we have prepared novel chiral phos-
phine–oxazinane such as 5b and demonstrated the pal-
ladium-catalyzed asymmetric allylic alkylation
proceeded using these ligands with a good enantiomeric
excess of up to 95% ee. Further application and modifi-
cation of the ligand 5 are in progress.
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