

Tetrahedron Letters 42 (2001) 4837-4839

TETRAHEDRON LETTERS

Novel chiral phosphine-oxazinane ligands in palladium-catalyzed asymmetric allylic alkylation

Takashi Mino,* Sosuke Hata, Kouji Ohtaka, Masami Sakamoto and Tsutomu Fujita

Department of Materials Technology, Faculty of Engineering, Chiba University, Inage-ku, Chiba 263-8522, Japan Received 2 March 2001; revised 8 May 2001; accepted 18 May 2001

Abstract—Palladium-catalyzed asymmetric allylic alkylation of 1,3-diphenyl-2-propenyl acetate (8a) with a dimethyl malonate– BSA–LiOAc system has been successfully carried out in the presence of novel chiral phosphine–oxazinane ligands such as 5b in good yields with good enantioselectivities (up to 95% ee). © 2001 Elsevier Science Ltd. All rights reserved.

Palladium-catalyzed asymmetric allylic alkylation is a useful process for asymmetric C-C bond forming reactions. To achieve high enantioselectivity in the catalytic reaction, a variety of chiral ligands have been studied.¹ Among the ligands, chiral oxazolines have proved to be extremely efficient ligands in some catalytic reactions.² Recently, chiral phosphine-oxazine ligand 1^3 and chiral phosphine–oxazolidine ligands 2^4 and 3^5 were shown to be effective ligands in palladium-catalyzed asymmetric allylic alkylation similarly to phosphine-oxazolines. On the other hand, palladium-catalyzed asymmetric allylic alkylation using phosphine-oxathiane ligand 4 has been reported.⁶ To the best of our knowledge, the oxazinane type ligands have never been involved in this area. With the aim of exploiting the less popular oxazinanes, we synthesized chiral phosphine-oxazinane, starting from (S)-ketopinic acid.⁷ Herein, we wish to describe the first application of the oxazinanes as ligands to the palladium-catalyzed asymmetric allylic alkylation.

The synthesis of phosphine–oxazinane ligands 5 is shown in Scheme 1 and Table 1. These ligands 5^8 were

prepared by the corresponding amines with (S)ketopinic acid followed by the reduction of **6**, and the condensation of aminoalcohols **7** with 2-(diphenylphosphino)benzaldehyde.

The ligands **5** were obtained the diasteromerically pure within NMR spectra. The stereochemistry of **5b** was determined by NOE measurement of ¹H NMR spectra. Thus, the NOE experiment for **5b** confirmed interactions between the H^a and H^b and between H^b and H^c (Fig. 1).

We applied the chiral phosphine–oxazinane ligands 5 to the palladium-catalyzed asymmetric allylic alkylation of 1,3-diphenyl-2-propenyl acetate (8a) with a dimethyl malonate (9a) (Scheme 2). This reaction was carried out in the presence of 2 mol% of $[Pd(\eta^3-C_3H_5)Cl]_2$, 4 mol% of chiral ligand, and a mixture of *N*,*O*-bis(trimethylsilyl)acetamide (BSA) and 2 mol% of LiOAc at room

temperature (entries 1–4, Table 2). These ligands 5 showed similar reactivity and enantioselectivity except 5d. Using ligand 5b, the product (R)-10a was obtained the best enantioselectivity (79% ee) in these ligands 5 (entry 2). We investigated the effect of solvents on this reaction using 5b (entries 2 and 5, 6, 8). When the reaction was carried out in toluene, the enantioselectivity was higher than for the other solvents (entry 6). On

Keywords: asymmetric synthesis; phosphine; oxazinane; palladium. * Corresponding author. Tel.: +81 43 290 3385; fax: +81 43 290 3401; e-mail: tmino@planet.tc.chiba-u.ac.jp

Scheme 1.

Table 1. Synthesis of phosphine-oxazinane ligands 5

Entry	R	Yield of 6 (%)	Yield of 7 (%)	Yield of 5 (%)
1	Et	36	59	55
2	<i>n</i> -Pr	58	90	47
3	<i>n</i> -Bu	65	65	64
4	Bn	52	6	38

the other hand, with diethyl methylmalonate (9c), the reaction gave the corresponding product $10c^9$ in moderate enantioselectivity (entry 7). The reaction at 0°C further improved the enantioselectivity to 88% ee (entry 9). Although the reaction rate became slow by further depressing the temperature (-20°C), the enantioselectivity was improved to 95% ee (entry 10). When 1,3-diphenyl-2-propenyl pivalate (8b) was used instead of 1,3-diphenyl-2-propenyl acetate (8a), the reaction with a dimethyl malonate (9a) gave the product 10a in good enantioselectivity (entry 11). When diethyl malonate (9b) was used instead of 9a, the reaction gave the corresponding product $10b^{10}$ in good enantioselectivity (entry 12).

Figure 1. Selected NOE correlations of 5b.

Scheme 2.

Table 2. Asymmetric allylic alkylation using chiral ligands 5^a

Entry	Ligand	R	\mathbb{R}^1	\mathbb{R}^2	Solv.	Temp. (°C)	Yield of 10 (%) ^b	Ee of 10 (%) ^c
1	5a	Me	Me	Н	THF	rt	85	64
2	5b	Me	Me	Н	THF	rt	98	79
3	5c	Me	Me	Н	THF	rt	82	74
4	5d	Me	Me	Н	THF	rt	13	22
5	5b	Me	Me	Н	Ether	rt	87	80
6	5b	Me	Me	Н	PhMe	rt	81	85
7	5b	Me	Et	Me	PhMe	rt	59	60
8	5b	Me	Me	Н	MeCN	rt	47	65
9 ^d	5b	Me	Me	Н	PhMe	0	90	88
10 ^d	5b	Me	Me	Н	PhMe	-20	50	95
11 ^e	5b	t-Bu	Me	Н	PhMe	-20	20	95
12 ^e	5b	Me	Et	Н	PhMe	-20	73	92 ^f

^a The reaction was carried out for 24 h.

^b Isolated yields.

^c Determined by HPLC analysis using a chiral column (Chiralcel OD-H).

^d This reaction was carried out for 100 h.

^e This reaction was carried out for 120 h.

^f Determined by HPLC analysis using a chiral column (Chiralcel OJ).

In conclusion, we have prepared novel chiral phosphine–oxazinane such as **5b** and demonstrated the palladium-catalyzed asymmetric allylic alkylation proceeded using these ligands with a good enantiomeric excess of up to 95% ee. Further application and modification of the ligand **5** are in progress.

References

- (a) Pfaltz, A.; Lautens, M. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer: Berlin, 1999; Chapter 24; (b) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395–422; (c) Williams, J. M. J. Synlett 1996, 705; (d) Pfaltz, A. Acc. Chem. Res. 1993, 26, 339–345; (e) Hayashi, T. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: New York, 1993; p. 325; (f) Consiglio, G.; Waymouth, R. M. Chem. Rev. 1989, 89, 257–276 and references cited therein.
- (a) Steinhagen, H.; Reggelin, M.; Helmchem, G. Angew. Chem.. Int. Ed. Engl. 1997, 36, 2108–2110; (b) Imai, Y.; Zhang, W.; Kida, T.; Nakatsuji, Y.; Ikeda, I. Tetrahedron Lett. 1998, 39, 4343–4346; (c) Pretot, R.; Pfaltz, A. Angew. Chem.. Int. Ed. Engl. 1998, 37, 323–325 and references cited therein.
- 3. Evans, P. A.; Brandt, T. A. *Tetrahedron Lett.* **1996**, *37*, 9143–9146.
- 4. Jin, M.-J.; Jung, J.-A.; Kim, S.-H. Tetrahedron Lett. 1999, 40, 5197–5198.
- 5. Okuyama, Y.; Nakano, H.; Hongo, H. *Tetrahedron: Asymmetry* **2000**, *11*, 1193–1198.
- (a) Nakano, H.; Okuyama, O.; Hongo, H. *Tetrahedron Lett.* 2000, 41, 4615–4618; (b) Nakano, H.; Okuyama, O.; Yanagida, M.; Hongo, H. J. Org. Chem. 2001, 66, 620– 625.
- Bartlett, P. D.; Knox, L. H. Org. Synth. Coll. Vol. 5 1973, 689–691.
- 8. Selected data for **5a**: $[\alpha]_{D}^{20} = -39.0^{\circ}$ (*c* 0.10, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 0.83 (t, 7.1 Hz, 3H), 0.83– 1.02 (m, 2H), 0.90 (s, 3H), 1.34–1.69 (m, 5H), 1.39 (s, 3H), 1.76–1.84 (m, 1H), 2.09 (d, 12.2 Hz, 1H), 2.13–2.22 (m, 1H), 3.12 (d, 12.2 Hz, 1H), 3.28 (dd, 2.9 and 7.8 Hz, 1H), 5.22 (d, 7.1 Hz, 1H), 6.83–6.85 (m, 1H), 7.17–7.18 (m, 1H), 7.25–7.36 (m, 11H), 7.73–7.77 (m, 1H); ³¹P NMR (122 MHz, CDCl₃) δ –15.9; FAB-MS (*m*/*z*) 468 (M⁺–H, 70); HRMS (FAB) calcd for C₃₁H₃₆NOP+H 470.2613, found 470.2595

Selected data for **5b**: $[\alpha]_{D}^{20} = -50.3^{\circ}$ (*c* 0.10, CHCl₃); ¹H

NMR (300 MHz, CDCl₃) δ 0.68 (t, 6.9 Hz, 3H), 0.83-0.87 (m, 1H), 0.90 (s, 3H), 0.94-0.98 (m, 1H), 1.21-1.34 (m, 3H), 1.36-1.42 (m, 1H), 1.41 (s, 3H), 1.50 (dd, 7.9 and 13.3 Hz, 1H), 1.60-1.72 (m, 2H), 1.77-1.84 (m, 1H), 1.98-2.03 (m, 1H), 2.05 (d, 12.2 Hz, 1H), 3.10 (d, 12.2 Hz, 1H), 3.32 (dd, 2.8 and 7.8 Hz, 1H), 5.23 (d, 7.1 Hz, 1H), 6.84-6.85 (m, 1H), 7.17-7.19 (m, 1H), 7.26-7.38 (m, 11H), 7.73–7.76 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 11.52, 20.05, 20.54, 22.69, 26.96, 31.16, 37.39, 45.59, 46.08, 46.20, 52.27, 53.84, 83.13, 92.00 (d, 26.9 Hz), 128.21-128.54 (Ar, m), 128.83, 129.41, 132.83, 133.77 (d, 19.7 Hz), 134.70 (d, 20.7 Hz), 135.86 (d, 14.5 Hz), 136.45 (d, 10.5 Hz), 136.90 (d, 10.3 Hz), 144.98 (d, 20.7 Hz); ³¹P NMR (122 MHz, CDCl₃) δ -16.0; FAB-MS (m/z) 482 $(M^+-H, 27)$; HRMS (FAB) calcd for $C_{32}H_{38}NOP+H$ 484.2768, found 484.2735.

Selected data for **5c**: $[\alpha]_{D}^{20} = -41.5^{\circ}$ (*c* 0.11, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 0.72 (t, 7.3 Hz, 3H), 0.90 (s, 3H), 0.94–1.68 (m, 8H), 1.41 (s, 3H), 1.78–1.84 (m, 1H), 2.01–2.09 (m, 1H), 2.04 (d, 12.1 Hz, 1H), 2.17 (br, 3H), 3.10 (d, 12.2 Hz, 1H), 3.32 (dd, 2.8 and 7.8 Hz, 1H), 5.23 (d, 7.1 Hz, 1H), 6.84–6.87 (m, 1H), 7.17–7.19 (m, 1H), 7.26–7.36 (m, 11H), 7.72–7.74 (m, 1H); ³¹P NMR (122 MHz, CDCl₃) δ –16.1; FAB-MS (*m*/*z*) 496 (M⁺–H, 97); HRMS (FAB) calcd for C₃₃H₄₀NOP+H 498.2926, found 498.2878.

Selected data for **5d**: $[\alpha]_{D}^{20} = -156.0^{\circ}$ (*c* 0.03, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 0.85 (s, 3H), 0.86–0.92 (m, 2H), 1.23–1.28 (m, 4H), 1.52 (s, 3H), 1.57–1.59 (m, 1H), 2.52–2.57 (m, 1H), 3.02 (d, 14.3 Hz, 1H), 3.10 (d, 12.3 Hz, 1H), 3.68 (d, 14.3 Hz, 1H), 3.79 (d, 12.3 Hz, 1H), 5.19 (d, 6.9 Hz, 1H), 6.74–6.75 (m, 1H), 7.07–7.10 (m, 6H), 7.23–7.36 (m, 11H), 7.75–7.82 (m, 1H); ³¹P NMR (122 MHz, CDCl₃) δ –14.4; FAB-MS (*m*/*z*) 530 (M⁺–H, 18); HRMS (FAB) calcd for C₃₆H₃₈NOP+H 532.2769, found 532.2747.

- (a) Pena-Cabrera, E.; Norrby, P.-O.; Sjoegren, M.; Vitagliano, A.; De Felice, V.; Oslob, J.; Ishii, S.; O'Neill, D.; Kermark, B.; Helquist, P. J. Am. Chem. Soc. 1996, 118, 4299–4313; (b) Mino, T.; Imiya, W.; Yamashita, M. Synlett 1997, 583–584; (c) Mino, T.; Shiotsuki, M.; Yamamoto, N.; Suenaga, T.; Sakamoto, M.; Fujita, T.; Yamashita, M. J. Org. Chem. 2001, 66, 1795–1797.
- (a) Nomura, N.; Mermet-Bouvier, Y. C.; RajanBabu, T. V. Synlett 1996, 745–746; (b) Clyne, D.; Mermet-Bouvier, Y.; Nomura, N.; RajanBabu, T. V. J. Org. Chem. 1999, 64, 7601–7611; (c) Yan, Y.-Y.; RajanBabu, T. V. Org. Lett. 2000, 2, 199–202.